Passivity based control and learning control of Hamiltonian systems 2

Kenji Fujimoto

Nagoya University
Outline

1. What is learning control?
2. Variational symmetry and learning
3. Applications
4. Conclusion
What is learning control? (1/4)

Iterative Learning Control (ILC) and Iterative Feedback Tuning (IFT)

ILC adjusts FF input and IFT adjusts FB controller by learning!
Learning control optimizes the parameters by steepest decent method.
Learning control optimizes the parameters by steepest decent method.

Find an optimal $x \in X$ minimizing the cost function $\Gamma : X \rightarrow \mathbb{R}$.
Learning control optimizes the parameters by steepest decent method.

Find an optimal \(x \in X \) minimizing the cost function \(\Gamma : X \rightarrow \mathbb{R} \).

Steepest decent method change the parameter \(x \) in the direction of gradient of \(\Gamma(x) \).

\[
 x_{(k+1)} = x_{(k)} - K \cdot \nabla \Gamma(x)
\]
Then, what is a problem?
Then, what is a problem?

The cost function $\Gamma(x)$ is unknown!
Then, what is a problem?

- The cost function $\Gamma(x)$ is unknown!

(Ex) To find a feedback gain K:

\[
\begin{aligned}
\dot{x} &= Ax + Bu \\
u &= Kx
\end{aligned}
\]

\[
\Gamma(K) := \int_{0}^{T} x^{T}Qx + u^{T}Rudt, \quad x(0) = x^{0}
\]

If the system parameters A and B are unknown, then $\Gamma(\cdot)$ is unknown as well.
Then, what is a problem?

The cost function $\Gamma(x)$ is unknown!

(Ex) To find a feedback gain K:

$$
\begin{cases}
 \dot{x} &= Ax + Bu \\
 u &= Kx
\end{cases}
$$

$$
\Gamma(K) := \int_0^T x^T Q x + u^T R u dt, \quad x(0) = x^0
$$

If the system parameters A and B are unknown, then $\Gamma(\cdot)$ is unknown as well.

\rightarrow Estimate (learn) $\nabla \Gamma(x)$ by experiments

(Ex) In case of $x \in \mathbb{R}$...

$$
\nabla \Gamma(x) \approx \frac{\Gamma(x + \Delta x) - \Gamma(x)}{\Delta x}
$$
What is learning control? (4/4)

- Again, what is a problem?
- Space $X(\ni x)$ can be high or infinite dimensional
Again, what is a problem?

Space $X(\ni x)$ can be high or infinite dimensional.

(Ex) To find a FF input u:

$$\dot{x} = Ax + Bu$$

$$\Gamma(u) := \int_0^T x^T Q x + u^T R u \, dt, \quad x(0) = x^0$$
What is learning control? (4/4)

Again, what is a problem?

- Space $X(\ni x)$ can be high or infinite dimensional

(Ex) To find a FF input u:

$$\dot{x} = Ax + Bu$$

$$\Gamma(u) := \int_0^T x^T Q x + u^T R u dt, \ x(0) = x^0$$

- Need to estimate the gradient!

(Ex) The following procedure needs infinite experiments!

$$\nabla \Gamma(x) \approx \frac{\Gamma(x + \Delta x) - \Gamma(x)}{\Delta x}$$
Gradient and variational adjoint (1/2)

Problem setting

- Plant: $\Sigma : U \rightarrow Y$

(Ex)

\[
\begin{aligned}
y &= \Sigma(u) : \quad \begin{cases}
\dot{x} &= f(x, u) \\
y &= h(x, u)
\end{cases}
\end{aligned}
\]

- Cost function: $\tilde{\Gamma} : U \times Y \rightarrow \mathbb{R}$

(Ex)

\[
\tilde{\Gamma}(u, y) := \int_0^T y^T Q y + u^T R u \, dt
\]
Gradient and variational adjoint (1/2)

Problem setting

Plant: $\Sigma : U \rightarrow Y$

(Ex)

$y = \Sigma(u) : \begin{cases} \dot{x} &= f(x, u) \\ y &= h(x, u) \end{cases}$

Cost function: $\tilde{\Gamma} : U \times Y \rightarrow \mathbb{R}$

(Ex)

$\tilde{\Gamma}(u, y) := \int_{0}^{T} y^T Q y + u^T R u \, dt$

Cost reduces to $\Gamma(u) := \tilde{\Gamma}(u, \Sigma(u))$.

$\tilde{\Gamma}(u, y)$ are known

$\Sigma(u)$ can be measured by experiments
Gradient and variational adjoint (2/2)

Gradient $\nabla \Gamma(u)$:

$$\langle \nabla \Gamma(u), du \rangle = \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), dy \rangle$$
Gradient and variational adjoint (2/2)

Gradient $\nabla \Gamma(u)$:

\[
\langle \nabla \Gamma(u), du \rangle = \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), dy \rangle \\
= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), d\Sigma(u)(du) \rangle
\]
Gradient and variational adjoint (2/2)

Gradient $\nabla \Gamma(u)$:

$$
\langle \nabla \Gamma(u), du \rangle = \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), dy \rangle
$$

$$
= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), d\Sigma(u)(du) \rangle
$$

$$
= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle (d\Sigma(u))^* \nabla_y \tilde{\Gamma}(u, \Sigma(u)), du \rangle
$$
Gradient and variational adjoint (2/2)

Gradient $\nabla \Gamma(u)$:

$$\langle \nabla \Gamma(u), du \rangle = \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), dy \rangle$$

$$= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), d\Sigma(u)(du) \rangle$$

$$= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle (d\Sigma(u))^* \nabla_y \tilde{\Gamma}(u, \Sigma(u)), du \rangle$$

$$= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)) + (d\Sigma(u))^* \nabla_y \tilde{\Gamma}(u, \Sigma(u)), du \rangle$$

$$\nabla \Gamma(u)$$

Information of the variational adjoint $(d\Sigma(u))$ is needed for learning control!
Gradient $\nabla \Gamma(u)$:

$$\langle \nabla \Gamma(u), du \rangle = \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), dy \rangle$$

$$= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle \nabla_y \tilde{\Gamma}(u, \Sigma(u)), d\Sigma(u)(du) \rangle$$

$$= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)), du \rangle + \langle (d\Sigma(u))^* \nabla_y \tilde{\Gamma}(u, \Sigma(u)), du \rangle$$

$$= \langle \nabla_u \tilde{\Gamma}(u, \Sigma(u)) + (d\Sigma(u))^* \nabla_y \tilde{\Gamma}(u, \Sigma(u)), du \rangle$$

$$\nabla \Gamma(u)$$

Information of the variational adjoint $(d\Sigma(u))^*$ is needed for learning control!
Learning in control engineering

- IFT (Hjalmarsson et al.)
 - Estimation of finite number of parameters

 \[\nabla \Gamma(x) \approx \frac{\Gamma(x + \Delta x) - \Gamma(x)}{\Delta x} \]

- ILC (Arimoto et al.)
 - Estimate \((d\Sigma(u))\)* by direct feedthrough term
 - Special cost function for trajectory tracking
 - Simple learning law

- ILC (proposed)
 - Estimate \((d\Sigma(u))\)* by experiments
 - Only for Hamiltonian control systems
 - Applicable to several optimal control problems
Outline

1. What is learning control?
2. Variational symmetry and learning
3. Applications
4. Conclusion
Hamiltonian control system with dissipation

\[y = \Sigma(u) : \begin{cases}
\dot{x} &= (J - R) \frac{\partial H(x, u, t)^T}{\partial x} \\
y &= -\frac{\partial H(x, u, t)^T}{\partial u}
\end{cases} \]
ILC

Let $u(i)$, $y(i)$ and $x(i)$ denote input, output and the state of the i-th experimental data of the time interval $t \in [t^0, t^1]$.

Update the input $u(i+1)$ such that it converges to an optimal value.
Variational symmetry and gradient

Gradient

\[\nabla \Gamma(u, \Sigma(u)) = \nabla_u \Gamma(u, y) + (d\Sigma(u))^* \nabla_y \Gamma(u, y) \]

Variational symmetry

The dynamics of \((d\Sigma(u))^*\) coincides with the time-reversal dynamics of \(d\Sigma(\bar{u})\)!

Derivative can be approximated by difference:

\[d\Sigma(u)(v) \approx \Sigma(u + v) - \Sigma(u) \]
Cost functions

- Cost function $\Gamma(x(t^1), y, u)$
 - Trajectory tracking:
 \[
 \Gamma = \int_{t_0}^{t_1} \|y(t) - y^d(t)\|^2 \, dt
 \]
 - Trajectory generation (Optimal control):
 \[
 \Gamma = \|x(t^1) - x^{1d}\|^2 + \gamma_u \int_{t_0}^{t_1} \|u(t)\|^2 \, dt
 \]
1. What is learning control?
2. Variational symmetry and learning
3. Applications
4. Conclusion
Trajectory tracking control (1/2)
Experimental system
Experimental result
Input saturation is characterized by a saturation function $\phi(\cdot)$.
Simulation with saturation

Without considering input saturation

[Graphs showing simulations with and without input saturation]
Simulation with saturation

- Without considering input saturation

- With considering input saturation (50 [Nm])
Application to nonholonomic systems

- Applicability: J, R have to be constant
- Not applicable to nonholonomic systems
- Let the system satisfy the condition via feedback
Construct a feedback only using the information of constraints
ILC and IFT

IFT adjusts FB controller while ILC adjusts FF input.
Application to jumping robots (1/3)

Jumping Robot [Hyon’04]

This robot has **passive running gait**!

Application of ILC to this robot with $y = \theta$
Due to the symmetry of the passive gates, the following cost function is adopted.

\[
\Gamma(u, y; \dot{y}; x^0) = k_1 \|u\|_{L^2}^2 + k_2 \|y + \mathcal{R}(y)\|_{L^2}^2 + k_3 \|\dot{y} - \mathcal{R}(\dot{y})\|_{L^2}^2
\]

where \(\mathcal{R} \) is the time-reversal operator:

\[\mathcal{R}(u)(t) = u(t^1 - t).\]

Time-derivative of \(\dot{y} \) can be evaluated.
Application to jumping robots (3/3)

![Graphs showing time versus amplitude and cost function](image)

- **θ** in the last iteration before learning
- **D** in the last iteration before learning
- Cost function
Feedback system is constructed by GCT.

Suppose that Hamiltonian function depends on the parameter $k \in \mathbb{R}^m$

\[
\begin{align*}
\dot{x} &= (J - R) \frac{\partial H(x, t, k)}{\partial x}^T \\
z &= -\int_{t_0}^{t_1} \frac{\partial H(x, t, k)}{\partial k}^T \, dt
\end{align*}
\]

Then the map $k \mapsto z$ has variational symmetry!

Any function(-al) of k and z can be minimized by experimental data!

Although ordinary IFT needs $m + 1$ experiments for one step iteration, the proposed method requires only 2 experiments!
For example, the Hamiltonian function of mass-spring-damper system becomes

\[
H(q, p) = \frac{1}{2m} \|p\|^2 + \frac{k}{2} \|q\|^2
\]

\[
z = -\int_{t_0}^{t_1} \|q\|^2 dt
\]

with the spring coefficient \(k\).

E.g., the following (optimal control type) cost function can be minimized:

\[
\Gamma(k, z) = \int_{t_0}^{t_1} \left(\|q\|^2 + \gamma \| kq \|^2 \right) dt
\]
Summary

Gradient of the cost function

\[\nabla \Gamma(u, \Sigma(u)) = \nabla_u \Gamma(u, y) + (d\Sigma(u))^* \nabla_y \Gamma(u, y) \]

- Variational symmetry of Hamiltonian systems is quite useful.
- ILC for optimal control is proposed based on it.
- Future work
 - Combination with statistical approach (Independent component analysis, Reinforcement learning)
 - Further applications
Conclusion

- Control of electro-mechanical systems
 - Feedback control
 - Passivity based control
 - Feedforward control
 - Optimal control via learning

Future work

Application to real world plants
Application to real world problems
Conclusion

- Control of electro-mechanical systems
 - Feedback control
 - Passivity based control
 - Feedforward control
 - Optimal control via learning

- Future work
 - Application to real world plants
 - Application to real world problems
Thank you for your attention!

URL: http://www.haya.nuem.nagoya-u.ac.jp/~fujimoto/
Email: fujimoto@nagoya-u.jp